
10
Summary

Uwe R. Zimmer - The Australian National University

Systems, Networks & Concurrency 2020

Summary

© 2020 Uwe R. Zimmer, The Australian National University page 748 of 758 (chapter 10: “Summary” up to page 758)

Summary

Concurrency – The Basic Concepts
• Forms of concurrency

• Models and terminology

• Abstractions and perspectives: computer science, physics & engineering

• Observations: non-determinism, atomicity, interaction, interleaving

• Correctness in concurrent systems

• Processes and threads

• Basic concepts and notions

• Process states

• Concurrent programming languages:

• Explicit concurrency: e.g. Ada, Chapel

• Implicit concurrency: functional programming – e.g. Haskell, Caml

Summary

© 2020 Uwe R. Zimmer, The Australian National University page 749 of 758 (chapter 10: “Summary” up to page 758)

Summary

Mutual Exclusion

• Defi nition of mutual exclusion

• Atomic load and atomic store operations
• … some classical errors

• Decker’s algorithm, Peterson’s algorithm

• Bakery algorithm

• Realistic hardware support
• Atomic test-and-set, Atomic exchanges, Memory cell reservations

• Semaphores
• Basic semaphore defi nition

• Operating systems style semaphores

Summary

© 2020 Uwe R. Zimmer, The Australian National University page 750 of 758 (chapter 10: “Summary” up to page 758)

Summary

Communication & Synchronization

• Shared memory based synchronization

• Flags, condition variables, semaphores,
conditional critical regions, monitors, protected objects.

• Guard evaluation times, nested monitor calls, deadlocks,
simultaneous reading, queue management.

• Synchronization and object orientation, blocking operations and re-queuing.

• Message based synchronization

• Synchronization models

• Addressing modes

• Message structures

• Examples

Summary

© 2020 Uwe R. Zimmer, The Australian National University page 751 of 758 (chapter 10: “Summary” up to page 758)

Summary

Non-Determinism

• Non-determimism by design:
• Benefi ts & considerations

• Non-determinism by interaction:
• Selective synchronization

• Selective accepts

• Selective calls

• Correctness of non-deterministic programs:
• Sources of non-determinism

• Predicates & invariants

Summary

© 2020 Uwe R. Zimmer, The Australian National University page 752 of 758 (chapter 10: “Summary” up to page 758)

Summary

Data Parallelism

• Data-Parallelism
• Vectorization

• Reduction

• General data-parallelism

• Examples
• Image processing

• Cellular automata

Summary

© 2020 Uwe R. Zimmer, The Australian National University page 753 of 758 (chapter 10: “Summary” up to page 758)

Summary

Scheduling

• Basic performance scheduling

• Motivation & Terms

• Levels of knowledge / assumptions about the task set

• Evaluation of performance and selection of appropriate methods

• Towards predictable scheduling

• Motivation & Terms

• Categories & Examples

Summary

© 2020 Uwe R. Zimmer, The Australian National University page 754 of 758 (chapter 10: “Summary” up to page 758)

Summary

Safety & Liveness

• Liveness
• Fairness

• Safety
• Deadlock detection

• Deadlock avoidance

• Deadlock prevention

• Atomic & Idempotent operations
• Definitions & implications

• Failure modes
• Definitions, fault sources and basic fault tolerance

Summary

© 2020 Uwe R. Zimmer, The Australian National University page 755 of 758 (chapter 10: “Summary” up to page 758)

Summary

Distributed Systems

• Networks
• OSI, topologies

• Practical network standards

• Time
• Synchronized clocks, virtual (logical) times

• Distributed critical regions (synchronized, logical, token ring)

• Distributed systems
• Elections

• Distributed states, consistent snapshots

• Distributed servers (replicates, distributed processing, distributed commits)

• Transactions (ACID properties, serializable interleavings, transaction schedulers)

Summary

© 2020 Uwe R. Zimmer, The Australian National University page 756 of 758 (chapter 10: “Summary” up to page 758)

Summary

Architectures

• Hardware architectures - from simple logic to supercomputers
• logic, CPU architecture, pipelines, out-of-order execution, multithreading, ...

• Data-Parallelism
• Vectorization, Reduction, General data-parallelism

• Concurrency in languages
• Some examples: Haskell, Occam, Chapel

• Operating systems
• Structures: monolithic, modular, layered, µkernels

• UNIX, POSIX

Summary

© 2020 Uwe R. Zimmer, The Australian National University page 757 of 758 (chapter 10: “Summary” up to page 758)

Exam preparations

Helpful

• Distinguish central aspects from excursions, examples & implementations.

• Gain full understanding of all central aspects.

• Be able to categorize any given example under a general theme discussed in the lecture.

• Explain to and discuss the topics with other (preferably better) students.

• Try whether you can connect aspects from different parts of the lecture.

Not helpful

• Remembering the slides word by word.

• Learn the Chapel / Unix / Posix / Occam / sockets reference manual page by page.

Summary

© 2020 Uwe R. Zimmer, The Australian National University page 758 of 758 (chapter 10: “Summary” up to page 758)

